A surface exposed O-linked galactose residue destabilises the structure of a folded helix-loop-helix dimer
Organic and Biomolecular Chemistry, ISSN: 1477-0520, Vol: 1, Issue: 14, Page: 2455-2460
2003
- 8Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef6
- Captures9
- Readers9
Article Description
A 42-residue glycopeptide Tn-15 and the corresponding reference polypeptide Thr-15 were designed and synthesized to provide a model system for the study of how glycosylation affects the stability of a molten globule-like protein. Tn-15 and Thr-15 fold into hairpin helix-loop-helix motifs that dimerise to form four-helix bundles and the only difference between the sequences is that Tn-15 carries an O-linked N-acetylgalactosamine residue at the side chain of threonine-15 whereas the sequence Thr-15 is unglycosylated. An analysis of the mean residue ellipticities at 222 nm of the two polypeptides and of the α-H chemical shift deviations from random coil values showed that glycosylation reduced the helical content of the polypeptides and increased the dissociation constant of the helix-loop-helix dimer to form monomers. The pH dependencies of the helical content of Tn-15 and Thr-15 differed as that of Thr-15 was largely unaffected by pH in the range from pH 4 to pH 10, whereas Tn-15 lost almost half of the helical content at pH 4 upon raising the pH to 10. No single amino acid residue was found to ionize in a way that could explain the observed pH dependence of Tn-15. The temperature dependence of the mean residue ellipticity of Tn-15 revealed a surprising decrease in helicity at 278 K in comparison with that at 293 K, reminiscent of cold denaturation, that was not observed for the reference four-helix bundle Thr-15.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0141841792&origin=inward; http://dx.doi.org/10.1039/b302847j; http://www.ncbi.nlm.nih.gov/pubmed/12956061; http://xlink.rsc.org/?DOI=B302847J; http://pubs.rsc.org/en/content/articlepdf/2003/OB/B302847J; https://xlink.rsc.org/?DOI=B302847J; https://dx.doi.org/10.1039/b302847j; https://pubs.rsc.org/en/content/articlelanding/2003/ob/b302847j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know