Molecular recognition in molecular tweezers systems: Quantum-chemical calculation of NMR chemical shifts
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 9, Issue: 32, Page: 4552-4562
2007
- 23Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- CrossRef19
- Captures9
- Readers9
Article Description
Quantum-chemical calculations for molecular tweezers systems are presented, where the focus is not only on the recognition process in the host-guest systems, but on the self aggregation of the tweezers host as well. Such intermolecular interactions influence the corresponding NMR spectra strongly by up to 6 ppm for proton chemical shifts, since ring-current effects are particularly important. The quantum-chemical results allow one to reliably assign the spectra and to gain information both on the structure and on the importance of intra- and intermolecular interactions. In addition, we study the accuracy of a variety of density functionals for describing the present host-guest systems, where we observe a considerable underestimation of ring-current effects on H NMR chemical shifts at the density functional theory (DFT) level using smaller basis sets such as 6-31G**, so that larger bases like TZP are required. This stands in contrast to the behavior of the Hartree-Fock scheme, where small basis sets, such as 6-31G**, provide reliable H NMR shieldings for molecular tweezers systems. © the Owner Societies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34547881507&origin=inward; http://dx.doi.org/10.1039/b706045a; http://www.ncbi.nlm.nih.gov/pubmed/17690781; https://xlink.rsc.org/?DOI=b706045a; https://dx.doi.org/10.1039/b706045a; https://pubs.rsc.org/en/content/articlelanding/2007/cp/b706045a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know