PlumX Metrics
Embed PlumX Metrics

Isobutane/butene alkylation on microporous and mesoporous solid acid catalysts: Probing the pore transport effects with liquid and near critical reaction media

Green Chemistry, ISSN: 1463-9270, Vol: 11, Issue: 1, Page: 102-10
2009
  • 29
    Citations
  • 0
    Usage
  • 22
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    29
    • Citation Indexes
      29
  • Captures
    22

Article Description

The alkylation of isobutane with 1-butene was investigated on microporous (β-zeolite) and mesoporous (silica supported heteropolyacids) catalysts in a slurry reactor. The reaction was investigated in the range of 25–100 bar and 15–95 °C in liquid phase and in near critical reaction media with either dense CO or dense ethane as diluent, partially replacing the excess isobutane. At 75 °C, the selectivity towards trimethylpentanes (TMP) in the liquid phase is 70%+ initially, but decreases with time on all the catalysts investigated. While near-critical reaction mixtures were employed in order to enhance pore diffusion rates, the conversion and selectivity profiles obtained with such mixtures are comparable to those obtained with liquid phase reaction mixtures in both microporous and mesoporous catalysts. This implies that pore diffusion effects play a limited role at higher temperatures (75–95 °C). In contrast, the liquid phase results at sub-ambient temperatures indicate that the catalyst is deactivated before the TMPs diffuse out of the pores, indicating that pore diffusion effects play an important role in the deactivation process at low temperatures. Our results suggest that novel approaches that enhance the pore-diffusion rates of the TMPs at lower temperatures must be pursued. © 2008 The Royal Society of Chemistry.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know