Self-assembly of copper succinate nanoparticles to form anisotropic mesostructures
Dalton Transactions, ISSN: 1477-9226, Issue: 18, Page: 3536-3541
2009
- 10Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Uniform cylindrical rods of copper succinate dihydrate of several microns in length and 200 nm in diameter were obtained by the reverse micellar (microemulsion) method at room temperature using CTAB as the surfactant. The rod-like structures are formed by an ordered assembly of spherical particles of 4-5 nm, which is facilitated by water molecules. The copper succinate particles, in the absence of the microemulsion or surfactant, show only spherical geometry, while in the presence of the surfactant, thicker rods (compared to as obtained by reverse micellar method) of varying length were obtained. The formation of the rod-like structure is driven by the permanent dipole moment of the succinate ion, which leads to the oriented attachment of the nanoparticles in the presence of the surfactant. A new phase (anhydrous copper succinate) is obtained upon heating the dihydrate at 75 °C, which shows branched and corrugated rods assembled from a random arrangement of nanoparticles. The water molecules appear to control the morphology of the rods giving smooth rods (ordered arrangement of nanoparticles) for the dihydrate while branched or disrupted rods with random arrangement of nanoparticles are obtained for the anhydrous phase. The chain length of the dicarboxylic acid (ligand) appears to have a role in controlling the aspect ratio of these anisotropic mesostructures. The ability to generate suitable conditions for self assembly into ordered nanostructures and to control the anisotropy would lead us towards a proper design of nanodevices. © 2009 The Royal Society of Chemistry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=65349122397&origin=inward; http://dx.doi.org/10.1039/b820778j; http://www.ncbi.nlm.nih.gov/pubmed/19381416; https://xlink.rsc.org/?DOI=b820778j; https://dx.doi.org/10.1039/b820778j; https://pubs.rsc.org/en/content/articlelanding/2009/dt/b820778j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know