Why turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 12, Issue: 16, Page: 3957-3960
2010
- 9Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef8
- Captures20
- Readers20
- 20
Article Description
Formation of stationary periodic patterns is paramount to many chemical, biological, physical, and ecological media. One of the most subtle mechanisms was suggested by Turing, who highlighted the applicability of isotropic reaction-diffusion dynamics with at least two diffusing fields. However, on finite domains with the presence of a symmetry breaking differential advection, two diffusing fields are rather disadvantageous to formation of stationary periodic patterns. We show that the criterion to stationary periodic patterns in Turing type models requires non-periodic boundary conditions and tuning of two parameters (a co-dimension-2 bifurcation in space) whereas in systems with one diffusing field (non-Turing) the bifurcation is of co-dimension 1 and thus easier to satisfy. We demonstrate this general result using spatial dynamics methods and direct numerical simulations of the canonical FitzHugh-Nagumo model. © 2010 the Owner Societies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77950828671&origin=inward; http://dx.doi.org/10.1039/b921918h; http://www.ncbi.nlm.nih.gov/pubmed/20379487; https://xlink.rsc.org/?DOI=b921918h; https://dx.doi.org/10.1039/b921918h; https://pubs.rsc.org/en/content/articlelanding/2010/cp/b921918h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know