Glucose-responsive polymer brushes for microcantilever sensing
Journal of Materials Chemistry, ISSN: 0959-9428, Vol: 20, Issue: 17, Page: 3391-3395
2010
- 74Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Glucose responsive polymer brushes were synthesized on gold substrates and microcantilever arrays. The response properties of these brushes were evaluated by exposing them to different glucose concentrations for a range of pH values. This work demonstrates the potential for polymer brush-functionalized micromechanical cantilevers as glucose detectors. Furthermore, the work demonstrates that stimulus-responsive polymer brushes on micromechanical cantilevers have a significantly larger bending response due to glucose binding compared with self-assembled monolayers. © The Royal Society of Chemistry 2010.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know