3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries
Journal of Materials Chemistry, ISSN: 0959-9428, Vol: 20, Issue: 18, Page: 3703-3708
2010
- 65Citations
- 78Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The deposition feasibility and electrochemical evaluation of highly structured negative electrode stacks for 3D-integrated batteries is demonstrated. The stacks comprise a TiN thin film, serving as both current collector and Li-barrier layer, covered by a polycrystalline Si (poly-Si) thin film as electrode material. In comparison with planar films, these poly-Si films present a storage capacity increase of about 5× for the highest pore aspect ratio electrodes. The step coverage of poly-Si can be considerably improved by growing TiN and poly-Si into wide trenches. This results in much smoother poly-Si films and significantly improved step coverage. Further optimization of the trench dimensions should result in poly-Si films with a Li-storage capacity increase of more than one order of magnitude with respect to planar films. © 2010 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know