Design of hydrodynamically confined microfluidics: Controlling flow envelope and pressure
Lab on a Chip, ISSN: 1473-0189, Vol: 11, Issue: 8, Page: 1491-1501
2011
- 24Citations
- 49Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- CrossRef24
- 21
- Captures49
- Readers49
- 49
Article Description
Closed-channel microfluidic devices are widely used in a number of chemical and biological applications; however, it is often difficult to interact with samples, such as cells, that are enclosed inside them. Hydrodynamically confined microflows (HCMs) allow microfluidic-type flows to be generated in open liquid environments, such as Petri dishes, thus greatly increasing the flexibility of microfluidic approaches. HCMs have previously been used for protein patterning and selective cell treatment applications, but the underlying fluid mechanics is not fully understood. Here, we examine the effect of device geometry and flow parameters on the properties of the flow envelope and pressure drop of several two-port HCM devices using a combination of experiments and modeling. A three-port device, which allows for different flow envelope shapes to be generated, is also analyzed. The experimental results agree well with the 3-D computational fluid dynamics simulations, with the majority of the measurements within 10% of the simulations. The results presented provide a framework for understanding the fluid mechanics of HCMs and will aid in the design of HCM devices for a broad range of applications. © The Royal Society of Chemistry 2011.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79953188391&origin=inward; http://dx.doi.org/10.1039/c0lc00416b; http://www.ncbi.nlm.nih.gov/pubmed/21359386; https://xlink.rsc.org/?DOI=c0lc00416b; https://dx.doi.org/10.1039/c0lc00416b; https://pubs.rsc.org/en/content/articlelanding/2011/lc/c0lc00416b
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know