The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility
CrystEngComm, ISSN: 1466-8033, Vol: 13, Issue: 10, Page: 3338-3341
2011
- 34Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
ZnO:Ga (GZO) materials with high thermal stability and high carrier mobility are essential for the development of transparent conductive electrodes (TCE). Theoretically, only the substitution doping of Ga could result in the main donor with very high thermal stability. For achieving this goal, we adopted a hydrothermal method to acquire GZO single crystals, based on the fact that the hydrothermal method can possibly provide an approximate thermodynamic equilibrium growth environment to grow GZO materials with perfect substitution of Ga for Zn. A centimetre-sized GZO single crystal with Ga dosage amount of 0.053 wt% (2.19 × 10 cm) was grown by the hydrothermal method. A precise measurement of the lattice constants reveals that the cell volume of the GZO crystal slightly shrinks by 0.09% after doping with Ga, indicating that the Ga atoms have substituted for Zn atoms, instead of existing as interstitial sites to expand the lattice parameters. A sharp X-ray rocking curve with the full width at half-maximum of the (002) reflection around 46.4 arc sec shows the high crystallinity of the GZO crystal. As expected, the as-grown GZO crystal exhibits a high RT carrier concentration (1.07 × 10 cm) and the highest value of Hall mobility (81.5 cm/(V s)) among current GZO materials. High thermal-stability is indicated by the little variation of these two parameters after being annealed at 1100 °C for 24 h. The carrier concentration is nearly independent of temperature (77-300 K). © 2011 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know