Barium sulfate crystallization dependence on upper rim calix[4]arene functional groups
CrystEngComm, ISSN: 1466-8033, Vol: 14, Issue: 3, Page: 1057-1062
2012
- 12Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Although the effects of p-sulfonated and p-phosphonated calix[4]arene on barium sulfate morphology are similar, their ability to form mesocrystals of material are markedly different. The p-phosphonated calix[4]arene results in the formation of fibre bundles similar to those previously observed during barium sulfate crystallization in the presence of di-block copolymers. The isostructural sulfonated calix[4]arene, however, affords material consistent with the initial formation of mesocrystals which subsequently fuse. This material shows significant beam damage when viewed under a transmission electron microscope (TEM) suggesting incorporation of the sulfonated calix[4]arene, although there was no evidence of this from X-ray diffraction and atomic force microscopy (AFM) studies. We hypothesise that this calixarene is incorporated without significant change in structure of the material, and that the interaction of the macrocycle with the barium sulfate lattice is sufficiently weak that surface AFM imaging is effective in removing it from the surface. © 2012 The Royal Society of Chemistry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84855676073&origin=inward; http://dx.doi.org/10.1039/c1ce06083j; https://xlink.rsc.org/?DOI=C1CE06083J; http://xlink.rsc.org/?DOI=C1CE06083J; http://pubs.rsc.org/en/content/articlepdf/2012/CE/C1CE06083J; https://dx.doi.org/10.1039/c1ce06083j; https://pubs.rsc.org/en/content/articlelanding/2012/ce/c1ce06083j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know