Origin, separation and identification of environmental nanoparticles: A review
Journal of Environmental Monitoring, ISSN: 1464-0325, Vol: 13, Issue: 5, Page: 1156-1163
2011
- 56Citations
- 70Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations56
- Citation Indexes55
- CrossRef55
- 55
- Policy Citations1
- 1
- Captures70
- Readers70
- 70
Review Description
The biogeochemical and ecological impacts of environmental nanoparticles (ENPs) are some of the fastest growing areas of research today. However, efficient separation and collection of ENPs in natural systems remains difficult. This review article is focused on experimental investigation of separation and identification of ENPs, including nanoparticles with size fractions in the range of <2000, 450 to 2000, 100 to 450 and 1 to 100 nm. An automated ultrafiltration device (AUD) was used successfully to overcome the problem of efficiently collecting ENPs in large quantities in red soils. A significant amount of hematite nanoparticles was present on the surface coating of kaolinite nanoparticles and aggregated hematite nanoparticles overlapping the edge of a kaolinite flake in a size range of 5 to 8 nm. Synchrotron XRD technique is more straightforward and powerful than conventional XRD with oriented specimens and random powder methods for identifying nanoparticles, crystallinity, and particle size in red soils, particularly for the illite, kaolinite, goethite and hematite nanoparticles. The AUD apparatus can be employed to efficiently collect large quantities of soil and related ENPs for investigation of their structural characteristics and surface properties, which have significant impact on weathering reaction pathways, catalysis, the fate of vital elements and environmental pollutants, and ecosystem restoration. © 2011 The Royal Society of Chemistry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79955581614&origin=inward; http://dx.doi.org/10.1039/c1em10013k; http://www.ncbi.nlm.nih.gov/pubmed/21505694; https://xlink.rsc.org/?DOI=c1em10013k; https://dx.doi.org/10.1039/c1em10013k; https://pubs.rsc.org/en/content/articlelanding/2011/em/c1em10013k
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know