Low temperature crystallization of transparent, highly ordered nanoporous SnO thin films: Application to room-temperature hydrogen sensing
Nanoscale, ISSN: 2040-3364, Vol: 3, Issue: 10, Page: 4283-4289
2011
- 18Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- CrossRef18
- 18
- Captures31
- Readers31
- 31
Article Description
High surface area highly ordered nanoporous thin films are the current gold standard for gas sensor use, however the nanostructure of such films is prone to collapse at annealing temperatures as low as 250 °C resulting in formation of a dense layer of limited utility. We report on a templating method used to deposit highly ordered nanoporous platinum (Pt)-doped tin dioxide (SnO) thin films that are crystallized by a 100 °C water vapor hydrothermal treatment, with the low temperature process being compatible with a large variety of substrates including plastic. The resulting highly ordered nanoporous, transparent Pt-SnO thin films are mechanically stable and can be annealed, as desired, at temperatures up to 800 °C for removal of the templating materials and tailoring of gas sensitivities without damage to the nanoporous structure. The synthesis method is general, offering a promising strategy for preparing high performance nanoporous metal oxide crystalline films for applications including gas sensing, photocatalysis, and 3 generation photovoltaics. In our example application of the synthesized materials, we find that these Pt-SnO films exhibit exceptional hydrogen gas sensing behavior, rapidly detecting low-level hydrogen concentrations at room temperature; for example, an eight order of magnitude change in electrical resistance is seen in response to 10: 000 ppm H , with only minimal sensitivity to humidity. © 2011 The Royal Society of Chemistry.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know