Biotransformations
Annual Reports on the Progress of Chemistry - Section B, ISSN: 0069-3030, Vol: 108, Page: 202-227
2012
- 7Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
This report reviews significant developments in applications of biological catalysis in synthetic organic chemistry for the year 2011. In the area of hydrolase-catalysed biotransformations, lipases have been used in dynamic kinetic resolutions of amines at low-temperature using radical-based racemisation methods. A system has also been developed for the lipase catalysed desymmetrisation of allenic diols. An unusual promiscuous activity of formate dehydrogenase has been described in which the enzyme catalysed a hydrolytic reaction. In reductase biotransformations, ene reductases of the Old Yellow Enzyme family have been applied to the asymmetric reduction of Baylis-Hillman adducts and also shown, in some cases, to catalyse oxazete formation in the transformation of nitro-alkenes. The carbon-carbon bond forming enzyme benzaldehyde lyase was reported to catalyse N-hydroxamic acid formation from benzaldehydes and nitrosobenzenes. An (R)-selective arylmalonate decarboxylase has been engineered either to act as a racemase or to catalyse decarooxylation with inverted enantioselectivity. New developments in oxidase biocatalysis include the application of flavin-dependent Bereberine Bridge Enzyme to the resolution of reticuline-like substrates through carbon-carbon bond formation. A Baeyer-Villiger monooxygenase catalysed a dynamic kinetic resolution using racemic substrates susceptible to racemisation at alkaline pH. Cytochromes P450 have been applied to the oxidation of gaseous alkanes including methane, in the presence of perfluoro alkanoic acids. The peroxygenase AaeAPO has been used to catalyse hydroxylation and epoxidation reactions in photobiocatalytic systems. Finally, artificial metalloenzymes based on the streptavidin-biotin system have now been applied to asymmetric imine reduction, dihydroxylation and alkene metathesis. © 2012 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know