Double modular modification of thiolactone-containing polymers: Towards polythiols and derived structures
Polymer Chemistry, ISSN: 1759-9954, Vol: 3, Issue: 4, Page: 1007-1015
2012
- 79Citations
- 56Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A conceptual proof for the double modification (aminolysis and subsequent thiol-click modification) of thiolactone units, incorporated in linear polymer scaffolds, was elaborated. These polymers were prepared by either reversible addition-fragmentation chain transfer (RAFT) or nitroxide mediated radical polymerization (NMP) starting from a stable, readily available styrenic thiolactone monomer (St-TLa). Successful copolymerization of the latter with styrene (St) or methyl methacrylate (MMA) yielded linear polymers with varying thiolactone content (4-25%). Upon amine treatment, the ring-opening of the pendent thiolactones resulted in the formation of linear polythiols. Reaction conditions were optimized to avoid cross-linking via disulfide formation, thus preserving the linear nature of the polymer. Different primary amines (propylamine, benzylamine, ethanolamine and Jeffamine M-1000) were attached to the polymer backbone, while the PDIs remained low. The resulting polythiols are versatile scaffolds for further modification by various thiol-click reactions. In this respect, thiol-maleimide conjugation was used as a model reaction. NMR- and SEC-analyses revealed a near-quantitative double modification of thiolactone containing polystyrene (PS) and poly(methylmethacrylate) (PMMA) by subsequent treatment with propylamine and N-benzylmaleimide. © 2012 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know