β-Relaxation governs protein stability in sugar-glass matrices
Soft Matter, ISSN: 1744-683X, Vol: 8, Issue: 10, Page: 2983-2991
2012
- 185Citations
- 123Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The stabilizing effect of sugar-glass matrix materials for freeze-drying proteins or nucleic acids has been variously ascribed to the thermodynamic effect of 'water replacement' by sugar molecules or to the kinetic effect of slowed α relaxation associated with sugar matrix vitrification. While evidence for each of these hypotheses exists, we show that neither can adequately account for the observed stabilization of proteins embedded in sugar-glasses. Instead, we find firm evidence that protein stability in these glasses is directly linked to high frequency β relaxation processes of the sugar matrix. Specifically, we observe that when the β relaxation time, τ , of sugar-glasses is increased with antiplasticizing additives, protein stability increases in linear proportion to the increase in τ , even though these same additives simultaneously decrease the glass transition temperature, T , and the α relaxation time, τ , of the sugar matrix materials. Moreover, we find that while sugars 'replace' water by stabilizing protein native-like conformation in the dry state, the resulting enhanced protein conformational stability does not have a significant impact on the degradation rate of the proteins in sugar-glasses. We discuss implications of these findings for the fundamental physics of glass formation and for effective engineering of protein stabilizing glasses through the modification of τ . © 2012 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know