Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS
Integrative Biology (United Kingdom), ISSN: 1757-9694, Vol: 5, Issue: 7, Page: 964-975
2013
- 57Citations
- 135Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations57
- Citation Indexes57
- 57
- CrossRef31
- Captures135
- Readers135
- 135
Article Description
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme. © 2013 The Royal Society of Chemistry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84879986080&origin=inward; http://dx.doi.org/10.1039/c3ib40022k; http://www.ncbi.nlm.nih.gov/pubmed/23695230; https://academic.oup.com/ib/article/5/7/964/5208881; https://dx.doi.org/10.1039/c3ib40022k; https://academic.oup.com/ib/article-abstract/5/7/964/5208881?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know