Electrofluorescence switching of tetrazine-modified TiO nanoparticles
Nanoscale, ISSN: 2040-3364, Vol: 5, Issue: 16, Page: 7321-7327
2013
- 24Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- 24
- CrossRef20
- Captures10
- Readers10
- 10
Article Description
Highly fluorescent tetrazine-modified TiO nanoparticles were prepared by the reaction of triethoxysilane-appended chloroalkoxy tetrazine (ESTZ) with TiO nanoparticles through a condensation reaction between the surface hydroxyl groups of an electrode and the silane anchor group of ESTZ. The prepared electrodes were used as robust fluorescent layers for electrochemical fluorescence switching (electrofluorochromism) applications in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a charge balancing mediator. The stable charge balancing mediator, TEMPO, in the electrolyte was found to be essential to reduce the intrinsic electron transport resistance of TiO in order to achieve reversible electrofluorescence switching. Furthermore it facilitated a fully reversible electrochemical reaction and provided a sufficient charge balance, which allowed us to realize semiconductor-based electrofluorescence switching with an on/off ratio of 4.0 and cyclability greater than 100 cycles. © 2013 The Royal Society of Chemistry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84880905271&origin=inward; http://dx.doi.org/10.1039/c3nr01648j; http://www.ncbi.nlm.nih.gov/pubmed/23820569; https://xlink.rsc.org/?DOI=c3nr01648j; https://dx.doi.org/10.1039/c3nr01648j; https://pubs.rsc.org/en/content/articlelanding/2013/nr/c3nr01648j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know