Cell-penetrating poly(disulfide)s: Focus on substrate-initiated co-polymerization
Polymer Chemistry, ISSN: 1759-9962, Vol: 5, Issue: 7, Page: 2433-2441
2014
- 17Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Outperforming cell-penetrating peptides, cell-penetrating poly(disulfide)s are attracting increasing attention. Recently we have shown that cell-penetrating poly(disulfide)s can be grown directly on substrates of free choice before delivery and depolymerized right afterwards. These unique characteristics are compatible with the general, non-toxic, traceless yet covalent delivery of substrates in an unmodified form. The objective of this study was to elaborate on substrate-initiated co-polymerization. The original propagators contain a strained disulfide for ring-opening disulfide-exchange polymerization and a guanidinium cation to assure cell-penetrating activity. Here, we report individually optimized conditions to polymerize these original propagators together with several other propagators. The nature of these new propagators significantly affected polymerization efficiency and conditions as well as size, polydispersity and transport activity of the final co-polymers. According to gel permeation chromatography, the length of co-polymers increases with hydrophobicity, bulk and valency of the co-propagators, whereas ion pairing with boronates gives shorter co-polymers and branching increases polydispersity. The activity of co-polymers increases with length, π-acidity, superhydrophobicity and boronate counterions. Hydrophobicity, π-basicity, bulk and branching appear less important for activity in fluorogenic vesicles. The here reported design, synthesis and evaluation of substrate-initiated co-polymers will be essential to find the best cell-penetrating poly(disulfide)s. © 2014 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know