Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance
RSC Advances, ISSN: 2046-2069, Vol: 3, Issue: 48, Page: 25865-25871
2013
- 74Citations
- 67Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Robust Pd nanoparticles were novel and successfully synthesized on the γ-AlO support by a simple and ecofriendly route through the assistance of CO. The unsupported and supported Pd nanoparticles were initially characterized with a combination of several techniques such as powder X-ray diffraction, energy-dispersion X-ray, X-ray photoelectron spectroscopy and transmission electron microscopy. The face-centered cubic Pd nanoparticles with uniform dispersion were successfully achieved with the Pd loading ranging from 1 wt% to 5 wt%. The resulting Pd nanoparticles (Pd/AlO) catalysts were found to be efficient and versatile for the hydrogenation of biomass-derived platform chemicals furfural and levulinic acid under very mild conditions, respectively, showing enhanced catalytic performance. © 2013 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know