Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry
Chemical Science, ISSN: 2041-6539, Vol: 4, Issue: 7, Page: 2752-2759
2013
- 49Citations
- 52Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The widely accepted approach for controlling polymer debonding/rebonding properties in responsive materials has been to purposefully engineer the functional end-groups responsible for monomer dynamic bonding. Here, however, we evidence that the debonding temperature of a polymer can also be tuned by changing the chain length of the polymer building blocks, thus altering the entropy released on debonding. Entropy driven debonding, as governed by building block chain length, is suggested theoretically and realized experimentally for two Diels-Alder polymer systems, each based on a different difunctional diene and a common difunctional dienophile. In each case a significant decrease (as much as 60 °C) in the retro Diels-Alder temperature was observed when the chain length of the difunctional dienophile building block was increased. These results have the potential to fundamentally change the approach utilized to design materials capable of bonding reversibly on demand. © 2013 Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know