Novel ionic lubricants for amorphous carbon surfaces: Molecular modeling of the structure and friction
Soft Matter, ISSN: 1744-683X, Vol: 9, Issue: 44, Page: 10606-10616
2013
- 21Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The present article reports a molecular dynamics study of ammonium based ionic liquids confined between surfaces of amorphous carbon. The ionic liquids studied herein are composed of alkylammonium cations combined with alkylsulfonate anions which due to their environmentally acceptable character are suitable candidates for lubrication. A model was built from first principles describing the interaction between ionic liquids and an amorphous carbon surface. A set of interaction parameters was obtained by fitting density functional theory potential energies of the interaction between fragments of ionic liquids and a cluster of diamond, with a site-site potential function. Molecular dynamics simulations using the developed potentials were performed, and the structure at the solid-liquid interface was analyzed, as well as the orientational order of the alkyl side chains with respect to the surface. Finally, by applying shear and load to the system we predict the friction coefficient at different values of shear velocities. © 2013 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know