Charge-driven co-assembly of polyelectrolytes across oil-water interfaces
Soft Matter, ISSN: 1744-683X, Vol: 9, Issue: 47, Page: 11270-11275
2013
- 29Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We report a simple strategy to co-assemble oppositely charged polyelectrolytes across oil-water interfaces; this allows the accumulation of an electrostatic complex at the interface of species that are not surface active by themselves. To this end, we use a new, oil-soluble anionic polymer, poly-(fluorene-co-benzothiadiazole-co-benzoic acid), in combination with a cationic polyelectrolyte that is dissolved in the aqueous phase. When only one of the two charged components is present, no positive adsorption is observed in interfacial tension measurements; by contrast, when both polyelectrolytes are present, in the oil and water phases respectively, a rapid decrease of the interfacial tension is observed, indicating co-adsorption of the cationic and anionic polyelectrolytes. The complexation strength can be tuned through changes in both ionic strength and pH. Confocal microscopy and co-localization analysis further verifies the presence of both polyelectrolytes at the interface. With this approach, emulsions can be stabilized for several weeks; moreover, using the sensitivity of the complex to changes in pH, we are able to reversibly break and make the emulsions on demand. © 2013 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know