Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process
Journal of Materials Chemistry A, ISSN: 2050-7488, Vol: 1, Issue: 36, Page: 11001-11010
2013
- 65Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Among the various carbonaceous materials, carbon nanofibers (CNFs) are widely utilized in different applications because of their superior mechanical and physicochemical characteristics. However, due to the low surface area compared to other nanocarbonaceous materials, CNFs performance as an electrode in capacitive deionization (CDI) units is comparatively low. In this study, this problem has been overcome by preparing multi-channel carbon nanofibers having a total surface area 10 times more than the conventional CNFs, by creating numerous channels on the nanofibers surface. The modified CNFs have been synthesized using a low cost, high yielding and facile method; an electrospinning technique. Typically, the stabilization and graphitization of electrospun nanofiber mats composed of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) leads to the formation of multi-channel CNFs due to the difference in the physicochemical characteristics of the two polymers and the complete thermal decomposition of the PMMA during the graphitization step. Three formulations were prepared; 0, 25 and 50 wt% PMMA with respect to the PAN. To properly evaluate the introduced modified CNFs, graphene was prepared using the chemical route. The utilized characterizations indicated that the CNFs obtained from the electrospun solution having 50% PMMA possess a surface area of 181 m g, which is more than all the investigated formulations including graphene. Accordingly, these nanofibers revealed a salt removal efficiency of ∼90% and a specific capacitance of 237 F g . Overall, the present study introduces an effective and simple strategy to distinctly improve the surface area of CNFs, which can strongly enhance their application in CDI technology. © 2013 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know