The effect of structural and chemical bonding changes on the optical properties of Si/SiC core/shell nanowires
Journal of Materials Chemistry C, ISSN: 2050-7534, Vol: 1, Issue: 34, Page: 5207-5215
2013
- 4Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Si/SiC core/shell nanowires (CS NWs) were synthesized. First, a Si NW was grown via a Vapor-Liquid-Solid (VLS) procedure using Au as a catalyst. Next, a SiC shell was deposited by a chemical vapor deposition (CVD) method after the removal of the Au tip at the top of the Si NW. We investigated the physical, chemical, and optical properties of the Si/SiC CS NWs as a function of annealing temperature. The SiC shell was initially deposited on the Si core with small clusters of an amorphous state, which were remarkably transformed into larger clusters by recrystallization after annealing under vacuum. To relieve the strain induced by the huge difference between the atomic sizes of Si and C, substitutionally incorporated C atoms can combine with another C atom at the third-nearest-neighbor distance in the Si C shell with increasing annealing temperature. Furthermore, the THz pulse emitted from the Si/SiC CS NWs was observed and analyzed. In the case of annealing treatment at 600 °C, the THz pulse intensity was substantially increased, which is not ascribed to Drude absorption but to mid-IR absorption. Moreover, based on the simulation results, we suggest that the existence of substitutional C atoms and control of the shell thickness is a viable method to enhance the THz pulse amplitude. © 2013 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know