Carbazole-based polysiloxane hosts for highly efficient solution-processed blue electrophosphorescent devices
Journal of Materials Chemistry C, ISSN: 2050-7534, Vol: 1, Issue: 34, Page: 5344-5350
2013
- 44Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The efficient host materials containing carbazole moieties linked to the backbone of polysiloxane through a phenyl bridge have been synthesized and characterized. They exhibit good film forming ability, high thermal decomposition temperatures and suitable glass transition temperatures, so as to form stable amorphous states. Moreover, the silicon-oxygen linkage disrupts their conjugation and results in a sufficiently high triplet energy level (3.0 eV). Iridium bis(4,6-difluorophenyl)pyridinato-N,C picolinate (FIrpic)-based devices using them as hosts show good overall performance with low efficiency roll-off. The device using PCzMSi as the host demonstrates the best performance with a maximum current efficiency of 22.8 cd A, a maximum power efficiency of 9.4 lm W and a maximum external quantum efficiency of 11.9% at a practical luminance of 1165 cd m. Even at a brightness of 5000 cd m level, the external quantum efficiency (EQE) still remains as high as 10%, suggesting a gentle roll-off of device efficiency at high current density. In addition, typically, the host PCzMSi film displays good mechanical performance by a nanoindentation technique to meet the practical application. These results demonstrate that the design of polysiloxane-based host materials is a promising approach to realize high performance solution-processed blue phosphorescent polymer light emitting diodes (PhPLEDs). © 2013 The Royal Society of Chemistry.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know