A spatiotemporally defined in vitro microenvironment for controllable signal delivery and drug screening
Analyst, ISSN: 1364-5528, Vol: 139, Issue: 19, Page: 4846-4854
2014
- 16Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- CrossRef16
- 16
- Captures49
- Readers49
- 49
Article Description
Cancer metastasis and drug resistance are important malignant tumor phenotypes that cause roughly 90% mortality in human cancers. Current therapeutic strategies, however, face substantial challenges partially due to a lack of applicable pre-clinical models and drug-screening platforms. Notably, microscale and three-dimensional (3D) tissue culture platforms capable of mimicking in vivo microenvironments to replicate physiological conditions have become vital tools in a wide range of cellular and clinical studies. Here, we present a microfluidic device capable of mimicking a configurable tumor microenvironment to study in vivo-like cancer cell migration as well as screening of inhibitors on both parental tumors and migratory cells. In addition, a novel evaporation-based paper pump was demonstrated to achieve adaptable and sustainable concentration gradients for up to 6 days in this model. This straightforward modeling approach allows for fast patterning of a wide variety of cell types in 3D and may be further integrated into biological assays. We also demonstrated cell migration from tumor spheroids induced by an epidermal growth factor (EGF) gradient and exhibited lowered expression of an epithelial marker (EpCAM) compared with parental cells, indicative of partial epithelial-mesenchymal transition (EMT) in this process. Importantly, pseudopodia protrusions from the migratory cells – critical during cancer metastasis – were demonstrated. Insights gained from this work offer new opportunities to achieve active control of in vitro tumor microenvironments on-demand, and may be amenable towards tailored clinical applications. © 2014 the Partner Organisations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84906659320&origin=inward; http://dx.doi.org/10.1039/c4an00936c; http://www.ncbi.nlm.nih.gov/pubmed/25089836; http://xlink.rsc.org/?DOI=C4AN00936C; http://pubs.rsc.org/en/content/articlepdf/2014/AN/C4AN00936C; https://xlink.rsc.org/?DOI=C4AN00936C; https://dx.doi.org/10.1039/c4an00936c; https://pubs.rsc.org/en/content/articlelanding/2014/an/c4an00936c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know