One-pot fabrication and thermoelectric properties of Ag nanoparticles-polyaniline hybrid nanocomposites
RSC Advances, ISSN: 2046-2069, Vol: 4, Issue: 51, Page: 26810-26816
2014
- 42Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this context, a one-pot and in situ strategy for fabrication of AgNPs (Ag nanoparticles)/PANI (polyaniline) nanocomposites in a micellar solution of dodecylbenzene sulfonic acid (DBSA, anionic surfactant) is introduced. Guided by this strategy, AgNPs were directly synthesized from silver nitrate. AgNPs/PANI hybrid nanocomposites with AgNPs were consolidated via spark plasma sintering (SPS). The phase structure and microstructure of the as-prepared composites were evaluated by several characterizations, and the growth mechanism of AgNPs was speculated. The thermoelectric properties of the samples with increasing silver nitrate content were systematically investigated. Compared with pure bulk PANI, the thermoelectric performance of AgNPs/PANI hybrid nanocomposites exhibits a distinct enhancement on the addition of AgNPs. The Seebeck coefficient (S) decreased slightly while the electric conductivity (σ) was found to increase remarkably. However, thermal conductivity (κ) remained unchanged with increasing silver nitrate content, which resulted in an obvious enhancement in the figure of merit (ZT) of the composites. Consequently, the maximum ZT of the AgNPs/PANI hybrid nanocomposites amazingly reached 5.73 × 10 , which is about 3.8 times of the ZT of the pure PANI (1.503 × 10). This study suggests that the hybridization of organic/low-dimensional metal particles is promising to effectively improve the thermoelectric properties of conducting polymers. This journal is © the Partner Organisations 2014.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84903649577&origin=inward; http://dx.doi.org/10.1039/c4ra02136c; http://xlink.rsc.org/?DOI=C4RA02136C; http://pubs.rsc.org/en/content/articlepdf/2014/RA/C4RA02136C; https://xlink.rsc.org/?DOI=C4RA02136C; https://dx.doi.org/10.1039/c4ra02136c; https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra02136c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know