Toughening mechanism behind intriguing stress-strain curves in tensile tests of highly enhanced compatibilization of biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends
RSC Advances, ISSN: 2046-2069, Vol: 4, Issue: 79, Page: 41722-41733
2014
- 30Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Highly enhanced compatibilization of biosourced and biodegradable polylactide (PLA) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) blends were successfully prepared by reactive melt compounding. Large shifts towards each other in terms of glass transition temperatures, a considerable reduction in the dispersed phase particle size and a significant increase in the interfacial adhesion between the PLA and P(3HB-co-4HB) phases were observed after compatibilization. In addition, chain branches occurred during the branching reaction decreased the crystallization ability of PLA, while crosslinks formed in the crosslinking reaction enhanced the crystallization ability of PLA on a large scale. Moreover, the blends exhibited a remarkable improvement of rheological properties of melt state when compared with that of blank PLA/P(3HB-co-4HB) blends. Upon increasing the content of the crosslinking agent, dicumyl peroxide (DCP), the blends showed increased yield tensile strength, modulus, and elongation at break. However, when DCP cooperated with triallyl isocyanurate (TAIC), the elongation at break decreased because the crosslinking network limited the mobility of the polymer chains to deform under a tensile load. Most notably, two typical and different kinds of growth of stress-strain curves were observed, and for the first time we demonstrated the toughening mechanism behind it in detail. Furthermore, SEM images of the fracture surfaces of the blends confirmed the toughening mechanism and that plastic deformation of the matrix and a debonding process were the two important ways of induced energy dissipation leading to toughened blends. This journal is
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84907144290&origin=inward; http://dx.doi.org/10.1039/c4ra06199c; https://xlink.rsc.org/?DOI=C4RA06199C; http://xlink.rsc.org/?DOI=C4RA06199C; http://pubs.rsc.org/en/content/articlepdf/2014/RA/C4RA06199C; https://dx.doi.org/10.1039/c4ra06199c; https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra06199c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know