Inhibiting the shuttle effect in lithium-sulfur batteries using a layer-by-layer assembled ion-permselective separator
RSC Advances, ISSN: 2046-2069, Vol: 4, Issue: 87, Page: 46940-46946
2014
- 72Citations
- 91Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A novel strategy for introducing ion-permselective properties in a conventional polyethylene (PE) separator to inhibit the shuttle effect of polysulfides in high-performance lithium-sulfur batteries is reported. This was accomplished by taking advantage of the pH-responsive multilayers of weak polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) assembled on the PE separator using layer-by-layer (LbL) assembly. It was found that the cationic permselectivity (permeability of cation/anion) of an ultrathin multilayer coated separator is highly tunable with respect to the number of bilayers and external pH, benefiting from fine tuning of the internal charge density of the multilayered films. The movement of polysulfide anions was significantly inhibited by five bilayers of PAH/PAA (ca. 98% with multilayers assembled at pH 3/3), while the movement of Li cations was preserved. As a result, the ion-permselective separator demonstrated a high initial reversible capacity of ca. 1418 mA h g with multilayers assembled at pH 3/3 because of the good permselectivity and the enhanced wetting properties of the LbL treated separator for electrolytes, leading to a significantly improved Coulombic efficiency as compared to a conventional PE separator, i.e., almost 100% over 50 cycles. We anticipate that the permselectivity controllable coating method will be applied for various other membrane technologies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84907546197&origin=inward; http://dx.doi.org/10.1039/c4ra09718a; http://xlink.rsc.org/?DOI=C4RA09718A; http://pubs.rsc.org/en/content/articlepdf/2014/RA/C4RA09718A; https://xlink.rsc.org/?DOI=C4RA09718A; https://dx.doi.org/10.1039/c4ra09718a; https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra09718a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know