A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine
Chemical Science, ISSN: 2041-6539, Vol: 5, Issue: 6, Page: 2177-2183
2014
- 331Citations
- 70Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations331
- Citation Indexes331
- 331
- CrossRef317
- Captures70
- Readers70
- 70
- Mentions1
- News Mentions1
- 1
Most Recent News
[ASAP] BODIPY-Based Fluorescent Probe for Dual-Channel Detection of Nitric Oxide and Glutathione: Visualization of Cross-Talk in Living Cells
Reactive nitrogen species (RNS) and reactive sulfur species (RSS) play interrelated roles in the redox homeostasis of biological systems. (1) Nitric oxide (NO), acting as
Article Description
Many studies have shown that glutathione (GSH) and cysteine (Cys)/homocysteine (Hcy) levels are interrelated in biological systems. To unravel the complicated biomedical mechanisms by which GSH and Cys/Hcy are involved in various disease states, probes that display distinct signals in response to GSH and Cys/Hcy are highly desirable. In this work, we report a rhodol thioester (1) that responds to GSH and Cys/Hcy with distinct fluorescence emissions in neutral media. Probe 1 reacts with Cys/Hcy to form the corresponding deconjugated spirolactam via a tandem native chemical ligation (NCL) reaction. This intramolecular spirocyclization leads to the "quinone-phenol" transduction of rhodol dyes, and an excited-state intramolecular proton transfer (ESIPT) process between the phenolic hydroxyl proton and the aromatic nitrogen in the benzothiazole unit occurs upon photoexcitation, thus affording 2-(2′-hydroxyphenyl) benzothiazole (HBT) emission (454 nm). In the case of the tripeptide GSH, only transthioesterification takes place removing the intramolecular photo-induced electron transfer (PET) process caused by the electron deficient 4-nitrobenzene moiety giving rise to a large fluorescence enhancement at the rhodol emission band (587 nm). The simultaneous detection of GSH and Cys/Hcy is attributed to the significantly different rates of intramolecular S,N-acyl shift of their corresponding thioester adducts derived from 1. The utility of probe 1 has been demonstrated in various biological systems including serum and cells. This journal is © the Partner Organisations 2014.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84900336931&origin=inward; http://dx.doi.org/10.1039/c4sc00308j; http://www.ncbi.nlm.nih.gov/pubmed/24995124; https://xlink.rsc.org/?DOI=c4sc00308j; https://dx.doi.org/10.1039/c4sc00308j; https://pubs.rsc.org/en/content/articlelanding/2014/sc/c4sc00308j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know