Development of silica grafted poly(1,8-octanediol-co-citrates) hybrid elastomers with highly tunable mechanical properties and biocompatibility
Journal of Materials Chemistry B, ISSN: 2050-750X, Vol: 3, Issue: 15, Page: 2986-3000
2015
- 30Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations30
- Citation Indexes30
- 30
- CrossRef26
- Captures28
- Readers28
- 28
Article Description
Biodegradable elastomers are attractive in soft tissue regeneration due to their biomimetic viscoelastic properties and biocompatibility. However, conventional elastomers are inherently weak and lack the bioactivity required for highly efficient tissue regeneration. Silica-based biomaterials have shown high mechanical stiffness and special bioactivities including stimulating osteogenesis and angiogenesis by enhancing corresponding gene expressions. Here, by a facile polymerization, we synthesized a series of silica grafted poly (1,8-octanediol-co-citrate) (SPOC) hybrid elastomers with highly tunable physicochemical properties and bioactivities. The silica phase was successfully grafted to the side chain of POC. The silica phase incorporation significantly endowed POC elastomers with highly controlled thermal stability, mechanical properties, hydrophilicity, biodegradation and biocompatibility. The tensile strength, initial modulus and elongation of SPOC hybrid elastomers were highly tunable and range from 2-15 MPa, 4-25 MPa and 50-140% respectively, which is almost a four-fold enhancement compared with pure POC elastomers. In addition, SPOC elastomers significantly enhanced the proliferation and metabolic activities of multiple cell lines including the adipose-derived stem cells, fibroblasts, myoblasts and osteoblasts, indicating their high biocompatibility. These optimized structures and properties of the silica-grafted hybrid elastomers make them promising for soft and hard tissue regeneration applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84926442749&origin=inward; http://dx.doi.org/10.1039/c4tb02089h; http://www.ncbi.nlm.nih.gov/pubmed/32262499; https://xlink.rsc.org/?DOI=C4TB02089H; http://xlink.rsc.org/?DOI=C4TB02089H; http://pubs.rsc.org/en/content/articlepdf/2015/TB/C4TB02089H; https://dx.doi.org/10.1039/c4tb02089h; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c4tb02089h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know