Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection
Lab on a Chip, ISSN: 1473-0189, Vol: 15, Issue: 14, Page: 3021-3029
2015
- 63Citations
- 53Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations63
- Citation Indexes63
- 63
- CrossRef58
- Captures53
- Readers53
- 53
Article Description
A photoionization detector (PID) is well known for its high sensitivity, large dynamic range, and non-destructive vapor detection capability. However, due to its tardy response, which results from the relatively large ionization chamber and dead volume, the application of the PID in gas chromatography (GC) has been limited. Here, we developed a rapid, flow-through, and highly sensitive microfluidic PID that was microfabricated directly on a conductive silicon wafer. The microfluidic PID has a significantly reduced ionization chamber volume of only 1.3 μL, nearly 10 times smaller than that of state-of-the-art PIDs and over 100 times smaller than that of commercial PIDs. Moreover, it has virtually zero dead volume due to its flow-through design. Consequently, the response time of the microfluidic PID can be considerably shortened, ultimately limited by its residence time (7.8 ms for 10 mL min and 78 ms for 1 mL min). Experimentally, the response of the microfluidic PID was measured to be the same as that of the standard flame ionization detector with peak full-widths-at-half-maximum of 0.25 s and 0.085 s for flow rates of 2.3 mL min and 10 mL min, respectively. Our studies further show that the microfluidic PID was able to detect analytes down to the picogram level (at 3σ of noise) and had a linear dynamic range of six orders of magnitude. Finally, because of the very short distance between the electrodes, low voltage (<10 VDC, over 10 times lower than that in a regular PID) can be used for microfluidic PID operation. This work will open a door to broad applications of PIDs in gas analyzers, in particular, micro-GC and multi-dimensional GC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84934268006&origin=inward; http://dx.doi.org/10.1039/c5lc00328h; http://www.ncbi.nlm.nih.gov/pubmed/26076383; https://xlink.rsc.org/?DOI=C5LC00328H; http://xlink.rsc.org/?DOI=C5LC00328H; http://pubs.rsc.org/en/content/articlepdf/2015/LC/C5LC00328H; https://dx.doi.org/10.1039/c5lc00328h; https://pubs.rsc.org/en/content/articlelanding/2015/lc/c5lc00328h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know