Synthesis of high-purity CuO nanoleaves and analysis of their ethanol gas sensing properties
RSC Advances, ISSN: 2046-2069, Vol: 5, Issue: 44, Page: 34788-34794
2015
- 39Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
CuO nanocrystals with as-designed morphologies such as uniform quasi-spherical nanoparticles and high-purity nanoleaves were synthesized by adjusting the addition of sodium hydroxide and hydrazine hydrate in aqueous solution at room temperature (25 °C). The increase of sodium hydroxide would accelerate the reaction rate and favor the nucleation of CuO nanocrystals. The decrease of the surface energy will promote the oriented attachment of nanocrystallites along the [-111] direction into nanowires and the final formation of two dimensional (2D) nanoleaves. Increasing the quantity of hydrazine hydrate could decrease the solution system energy and promote the aggregation of CuO nanocrystals from 2D nanoleaves into 3D quasi-spherical nanoparticles. All the CuO nanocrystals with different morphologies were characterized via transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The CuO nanoleaves exhibit excellent gas sensing performance in response to ethanol, showing the strongest response value of 8.22 at 1500 ppm ethanol for ∼260 °C.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84928346835&origin=inward; http://dx.doi.org/10.1039/c5ra03497c; https://xlink.rsc.org/?DOI=C5RA03497C; http://xlink.rsc.org/?DOI=C5RA03497C; http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA03497C; https://dx.doi.org/10.1039/c5ra03497c; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra03497c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know