Improved chemical stability of silver by selective distribution of silver particles on reduced graphene oxide nanosheets
RSC Advances, ISSN: 2046-2069, Vol: 5, Issue: 61, Page: 49257-49262
2015
- 17Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The chemical stability of particles on reduced graphene oxide (RGO) nanosheets is an important issue for the RGO/particles hybrid materials. Here we report that the chemical stability of environmentally sensitive silver can be significantly improved by controlling the distribution of silver particles on RGO nanosheets. By switching the sequence of "deoxygenation" and "deposition", two kinds of RGO/silver hybrids are prepared. The structure and chemical state of silver particles on RGO are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, ultraviolet-visible spectroscopy, Raman spectra, transmission electron microscopy and scanning electron microscope. It is found that the graphene/Ag hybrid prepared by "deposition" and then "deoxygenation" can still exhibit obvious surface enhanced Raman scattering (SERS) signals after 10-month storage, compared with the hybrid material fabricated in inverse order. The selective distribution of silver particles and non-uniform dispersion of electrons on RGO nanosheets are responsible for the different performances. This study provides a new insight into preparing chemically stable RGO/particle hybrid materials.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84930960216&origin=inward; http://dx.doi.org/10.1039/c5ra04508h; http://xlink.rsc.org/?DOI=C5RA04508H; http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA04508H; https://xlink.rsc.org/?DOI=C5RA04508H; https://dx.doi.org/10.1039/c5ra04508h; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra04508h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know