Real-time X-ray scattering studies of film evolution in high performing small-molecule-fullerene organic solar cells
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 3, Issue: 16, Page: 8764-8771
2015
- 42Citations
- 47Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We have studied the influence of the formulation additive 1,8-diiodooctane (DIO) on the structural evolution of bulk heterojunction (BHJ) films based the small molecule donor 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-5-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh)) and phenyl-C-butyric-acid-methyl ester ([70]PCBM). Real-time, in situ, grazing-incidence X-ray scattering experiments allow us to characterize the development of crystalline order via diffraction and phase separation via small angle scattering. The performance of p-DTS(FBTTh) based solar cells exhibits a distinct optimum with respect to volume fraction of DIO in the coating solution, unlike many polymer-fullerene systems that exhibit plateaus in performance above a certain additive volume fraction. Increasing the DIO volume fraction increases the crystallinity of p-DTS(FBTTh) and dramatically increases the phase separation length scale even at small DIO amounts. These results suggest that the existence of an optimal DIO amount is a consequence of the phase separation length scale and its relationship to the optimal length for exciton dissociation. The effects of DIO on the time evolution of the drying films indicates that it acts as both a solvent and a plasticizer for p-DTS(FBTTh), controlling its nucleation density and promoting its crystal growth.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84926647139&origin=inward; http://dx.doi.org/10.1039/c5ta00935a; https://xlink.rsc.org/?DOI=C5TA00935A; http://xlink.rsc.org/?DOI=C5TA00935A; http://pubs.rsc.org/en/content/articlepdf/2015/TA/C5TA00935A; https://dx.doi.org/10.1039/c5ta00935a; https://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta00935a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know