Naturally inspired polyelectrolyte multilayer composite films synthesised through layer-by-layer assembly and chemically infiltrated with CaCO
Journal of Materials Chemistry B, ISSN: 2050-750X, Vol: 3, Issue: 24, Page: 4821-4830
2015
- 14Citations
- 24Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- CrossRef14
- 14
- Captures24
- Readers24
- 24
Article Description
Naturally occurring composite structures like antler bone and nacre have a highly ordered structural design at the nanoscale. Nature's successful architecture has attracted widespread interest in mimicking such systems artificially, the goal being to design tough composite materials with adaptable mechanical properties. Here we report results on synthesis pathways towards fabricating such materials, including a chemical infiltration route where calcium carbonate particles nucleate and grow inside polyelectrolyte multilayers assembled via a layer-by-layer route. SEM analysis demonstrates a considerable change in the morphology of thin films upon chemical infiltration. The depth of mineralisation within the multilayer is confirmed by TOF-SIMS studies of both mineralised and non-mineralised thin films. TGA was used to calculate the overall content of CaCO within multilayer films. Infiltrated multilayers have shown up to 60% w/w of calcium carbonate which is comparable to structures like bones. X-ray diffraction to characterise the crystallographic structure and micromechanical testing involving nano-indentation have also been conducted. The Young's modulus of mineralised multilayer thin films significantly increased up to 10 GPa after infiltration in comparison to the non-mineralised multilayers with a modulus of only 3.8 GPa, while the increase in hardness is almost 50-fold. Thus, the synthetic composites can be compared with natural biomineralised tissues like nacre, ultimately replicating the natural strength of biomimetic materials on the nanoscale.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84935847444&origin=inward; http://dx.doi.org/10.1039/c5tb00055f; http://www.ncbi.nlm.nih.gov/pubmed/32262671; https://xlink.rsc.org/?DOI=C5TB00055F; http://xlink.rsc.org/?DOI=C5TB00055F; http://pubs.rsc.org/en/content/articlepdf/2015/TB/C5TB00055F; https://dx.doi.org/10.1039/c5tb00055f; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00055f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know