Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells
Journal of Materials Chemistry B, ISSN: 2050-750X, Vol: 3, Issue: 25, Page: 5103-5110
2015
- 48Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations48
- Citation Indexes47
- 47
- CrossRef46
- Patent Family Citations1
- 1
- Captures36
- Readers36
- 36
Article Description
Here we develop a novel fabrication approach for producing three-dimensional (3D) conducting polymer-based bioelectronic interfaces (BEIs) that can be integrated on electronic devices for rare circulating tumor cell (CTC) isolation, detection, and collection via an electrically triggered cell released from chips. Based on the chemical oxidative polymerization of carboxylic acid-modified 3,4-ethylenedioxythiophene and modified poly(dimethylsiloxane) (PDMS) transfer printing technology, the high-aspect-ratio structures of poly(3,4-ethylenedioxythiophene) (PEDOT)-based "nanorod" arrays can be fabricated on indium tin oxide (ITO) electrodes when using the Si "microrod" arrays as masters. Furthermore, we integrated the biotinylated poly-(l)-lysine-graft-poly-ethylene-glycol (PLL-g-PEG-biotin) coating with 3D PEDOT-based BEIs for dynamic control of the capture/release performance of CTCs on chips; this combination exhibited an optimal cell-capture yield cells of ∼45 000 cells cm-2 from EpCAM-positive MCF7 while maintaining resistance from the adhesion of EpCAM-negative HeLa cells at a density of ∼4000 cells cm-2. By taking advantage of the electrochemical doping/dedoping properties of PEDOT materials, the captured CTCs can be triggered to be electrically released through the desorption phenomena of the PLL-g-PEG-biotin. More than 90% of the captured cells can be released while maintaining very high cell viability. Therefore, it is conceivable that the use of a 3D PEDOT-based BEI platform will meet the requirements for the development of downstream characterization of CTCs, as well as the next generation of bioelectronics for biomedical applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84934931384&origin=inward; http://dx.doi.org/10.1039/c5tb00096c; http://www.ncbi.nlm.nih.gov/pubmed/32262462; https://xlink.rsc.org/?DOI=C5TB00096C; http://xlink.rsc.org/?DOI=C5TB00096C; http://pubs.rsc.org/en/content/articlepdf/2015/TB/C5TB00096C; https://dx.doi.org/10.1039/c5tb00096c; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00096c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know