First-principles calculations of the electronic structure and bonding in metal cluster-fullerene materials considered within the superatomic framework.
Physical chemistry chemical physics : PCCP, ISSN: 1463-9084, Vol: 18, Issue: 47, Page: 32541-32550
2016
- 12Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- CrossRef12
- Captures15
- Readers15
- 14
Article Description
Inspired by recent success of synthesizing cluster assembled compounds we address the question to what extent the three new materials [CoSe(PEt)][C], [CrTe(PEt)][C], and [NiTe(PEt)]C, upon forming bulk compounds, imitate atomic analogues. Although experimental results suggest the latter, a theoretical approach is the method of choice for offering a conclusive answer and for studying the actual superatomic character. The concept of superatoms for describing atom-imitating clusters is very intriguing since it allows chemists to apply their chemical intuition - a useful tool for predicting new materials - when it comes to inter-cluster reactions. Thus, we systematically study the lattice structure, the intercluster binding, and the electronic structure by density functional theory and assess them in terms of their superatomic features. We show that collective properties arise upon bulk formation, which promotes arguments for the formation of solids in which the constituent clusters have a superatomic character that determines some form of chemical bonding. Additionally, we find evidence for the formation of superatomic states. Unfortunately, however, due to the mixing of electronic states of transition metals and chalcogen atoms, no typical electronic shell closing in the cluster cores can be identified.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know