Design of porphyrin-based ligands for the assembly of [d-block metal : calcium] bimetallic centers
Dalton Transactions, ISSN: 1477-9234, Vol: 46, Issue: 13, Page: 4199-4208
2017
- 6Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef6
- Captures11
- Readers11
- 11
Article Description
The association of different metals in stable, well-defined molecular assemblies remains a great challenge of supramolecular chemistry. In such constructs, the emergence of synergism, or cooperative effects between the different metal centers is particularly intriguing. These effects can lead to uncommon reactivity or remarkable physico-chemical properties that are not otherwise achievable. For example, the association of alkaline or alkaline-earth cations and transition metals is pivotal for the activity of several biomolecules and human-made catalysts that carry out fundamental redox transformations (water oxidation, nitrogen reduction, water-gas shift reaction, etc.). In many cases the precise nature of the interactions between the alkaline-earth cations and the redox-active transition metals remains elusive due to the difficulty of building stable molecular heterometallic assemblies that associate transition metals and alkaline or alkaline-earth cations in a controlled way. In this work we present the rational design of porphyrin-based ligands possessing a second binding site for alkaline-earth cations above the porphyrin macrocycle primary complexation site. We demonstrate that by using a combination of crown ether and carboxylic acid substituents suitably positioned on the periphery of the porphyrin, bitopic ligands can be obtained. The binding of calcium, a typical alkaline-earth cation, by the newly prepared ligands has been studied in detail and we show that a moderately large binding constant can be achieved in protic media using ligands that possess some degree of structural flexibility. The formation of Zn-Ca assemblies discussed in this work is viewed as a stepping stone towards the assembly of well defined molecular transition metal-alkaline earth bimetallic centers using a versatile organic scaffold.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85016431801&origin=inward; http://dx.doi.org/10.1039/c6dt04647a; http://www.ncbi.nlm.nih.gov/pubmed/28251203; https://xlink.rsc.org/?DOI=C6DT04647A; http://xlink.rsc.org/?DOI=C6DT04647A; http://pubs.rsc.org/en/content/articlepdf/2017/DT/C6DT04647A; https://dx.doi.org/10.1039/c6dt04647a; https://pubs.rsc.org/en/content/articlelanding/2017/DT/C6DT04647A
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know