Structure and property optimization of perfluorinated short side chain membranes for hydrogen fuel cells using orientational stretching
RSC Advances, ISSN: 2046-2069, Vol: 6, Issue: 110, Page: 108864-108875
2016
- 12Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Small-angle neutron scattering has been applied to study the structure peculiarities of perfluorinated proton conducting polymer samples containing sulfonic groups of the Aquivion® type in dry and moistened conditions, which differ from Nafion® type membranes by the length of the side chains with sulfonic acid groups. The fine structure of the membranes is revealed, which is based on a system of regular proton conducting channels in the perfluorinated polymer matrix. The way this fine structure changes was determined as a function of the equivalent weight of the membrane, and the relation of these changes with proton conductivity value is established. The neutron contrast variation method enabled us to study the effect of orientational stretching on the fine structure. It was found that stretching is accompanied by an increase in proton conductivity due to changes in the fine structure of the channel system. Our investigations confirm that a reduction in the side chain length affects the fine structure of the perfluorinated proton conducting membranes, which is accompanied by an improvement in their performance in hydrogen fuel cells. Therefore, Aquivion® type systems will allow to reduce and possibly remove the existing operational restrictions of Nafion®.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84997498600&origin=inward; http://dx.doi.org/10.1039/c6ra23445c; https://xlink.rsc.org/?DOI=C6RA23445C; http://xlink.rsc.org/?DOI=C6RA23445C; http://pubs.rsc.org/en/content/articlepdf/2016/RA/C6RA23445C; https://dx.doi.org/10.1039/c6ra23445c; https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra23445c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know