PlumX Metrics
Embed PlumX Metrics

Aerobic alcohol oxidation and oxygen atom transfer reactions catalyzed by a nonheme iron(II)-α-keto acid complex

Chemical Science, ISSN: 2041-6539, Vol: 7, Issue: 8, Page: 5322-5331
2016
  • 45
    Citations
  • 0
    Usage
  • 35
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

α-Ketoglutarate-dependent enzymes catalyze many important biological oxidation/oxygenation reactions. Iron(iv)-oxo intermediates have been established as key oxidants in these oxidation reactions. While most reported model iron(ii)-α-keto acid complexes exhibit stoichiometric reactivity, selective oxidation of substrates with dioxygen catalyzed by biomimetic iron(ii)-α-keto acid complexes remains unexplored. In this direction, we have investigated the ability of an iron(ii) complex [(Tp)Fe(BF)] (1) (Tp = hydrotris(3-phenyl-5-methylpyrazolyl)borate and BF = monoanionic benzoylformate) to catalyze the aerobic oxidation of organic substrates. An iron-oxo oxidant, intercepted in the reaction of 1 with O, selectively oxidizes sulfides to sulfoxides, alkenes to epoxides, and alcohols to the corresponding carbonyl compounds. The oxidant from 1 is able to hydroxylate the benzylic carbon of phenylacetic acid to afford mandelic acid with the incorporation of one oxygen atom from O into the product. The iron(ii)-benzoylformate complex oxidatively converts phenoxyacetic acids to the corresponding phenols, thereby mimicking the function of iron(ii)-α-ketoglutarate-dependent 2,4-dichlorophenoxyacetate dioxygenase (TfdA). Furthermore, complex 1 exhibits catalytic aerobic oxidation of alcohols and oxygen atom transfer reactions with multiple turnovers.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know