Design and synthesis of energetic materials towards high density and positive oxygen balance by N-dinitromethyl functionalization of nitroazoles
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 4, Issue: 15, Page: 5495-5504
2016
- 155Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A new N-functionalized strategy of nitrogen heterocycles was utilized for the synthesis of nitroazole-based energetic materials, giving rise to a new family of highly dense and oxygen-rich energetic materials. They were characterized by IR spectroscopy, NMR spectroscopy, elemental analysis, DSC, and X-ray diffraction. These new molecules exhibit high densities, moderate to good thermal stabilities, acceptable impact and friction sensitivities, and excellent detonation properties, which suggest potential applications as energetic materials or oxidizers. Interestingly, among tetrazole-based CHNO energetic materials compound 5 has the highest measured density of 1.97 g cm to date. 5c is the first and the only heterocyclic CHNO energetic salt with a positive OB until now. Compounds 5 and 6 exhibit excellent detonation properties (38.5 GPa, 9.22 km s; 37.0 GPa, 9.05 km s), comparable to the highly explosive HMX. With high OB, the specific impulses of 5, 5b, 5c, and 6c are superior to those of AP and ADN as neat compounds, and the ratio of oxidizer/aluminium/PBAN (%) is 80 : 20 : 0 or 80 : 13 : 7. Furthermore, computational results, BDEs, Mulliken charges and Wiberg bond orders also support the superior qualities of the newly prepared compounds and the design strategy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84967285722&origin=inward; http://dx.doi.org/10.1039/c6ta01501h; http://xlink.rsc.org/?DOI=C6TA01501H; http://pubs.rsc.org/en/content/articlepdf/2016/TA/C6TA01501H; https://xlink.rsc.org/?DOI=C6TA01501H; https://dx.doi.org/10.1039/c6ta01501h; https://pubs.rsc.org/en/content/articlelanding/2016/ta/c6ta01501h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know