Revealing the influence of the solvent evaporation rate and thermal annealing on the molecular packing and charge transport of DPP(TBFu)
Journal of Materials Chemistry C, ISSN: 2050-7526, Vol: 4, Issue: 21, Page: 4654-4661
2016
- 39Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
By means of atomistic molecular dynamics simulations, we have investigated the effect of the solvent evaporation rate and thermal annealing on the molecular packing morphology of a diketopyrrolopyrrole based organic photovoltaic donor material, DPP(TBFu), which displays excellent hole mobility. It is observed that slow evaporation of solvent will lead to a relatively high degree of molecular packing order while leaving many voids in the as-cast sample. Upon thermal annealing, the as-cast samples at both fast and slow evaporation rates become more compact and much more apparently at the slow evaporation rate. Interestingly, the effect of thermal annealing on molecular packing order depends on the solvent evaporation rates of the as-cast samples. Upon thermal annealing, the molecular packing order of the fast evaporated sample is enhanced with increased π-π stacks. In contrast, thermal annealing will decrease the degree of packing order for the slow evaporated sample since the orientations and conformations of the molecules at the aggregate boundaries are substantially modulated to squeeze the voids. Electrical network analyses point to the fact that the mesoscopic electrical connectivities for all the samples are quite effective and insensitive to the modifications of local molecular ordering due to the delocalized HOMO of DPP(TBFu) providing efficient intermolecular electronic interactions. The hole mobilities of all the fabricated samples are thus estimated to be similar and quite high. Finally, our simulations point to the fact that the modest enhancement of mobility upon thermal annealing is correlated with the increased density rather than the varied ordering of molecular packing. Our work provides an atomistic insight into the evolution of thin-film morphology of organic photovoltaic molecular materials during solution processing and thermal annealing treatments and sheds light on the correlation between the molecular structure, packing morphology and hole transport capability.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84971515800&origin=inward; http://dx.doi.org/10.1039/c6tc01201a; https://xlink.rsc.org/?DOI=C6TC01201A; http://xlink.rsc.org/?DOI=C6TC01201A; http://pubs.rsc.org/en/content/articlepdf/2016/TC/C6TC01201A; https://dx.doi.org/10.1039/c6tc01201a; https://pubs.rsc.org/en/content/articlelanding/2016/tc/c6tc01201a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know