The carbon nanotube formation parameter space: Data mining and mechanistic understanding for efficient resource use
Green Chemistry, ISSN: 1463-9270, Vol: 19, Issue: 16, Page: 3787-3800
2017
- 20Citations
- 57Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Carbon nanotube (CNT) synthesis via catalytic chemical vapor deposition is relatively energy consumptive and among the least efficient reactions with respect to carbon conversion efficiency. Interestingly, these processes can be fed using a diverse set of hydrocarbon starting materials, including methane, ethylene, and acetylene, over a wide range of operating temperatures and carbon-to-hydrogen feedstock ratios. Mapping the parameter space for successful CNT growth through data extraction from published literature illuminated the most energy- and material- efficient synthetic pathways in practice to date and provided insights on thermodynamic limitation of CNT growth (i.e., the fundamental mechanisms of CNT formation). Further experimental investigations confirmed that emergent trends in the literature were the result of physicochemical constraints on the process rather than behavioral inertia in the community. The initiation temperatures for CNT growth from acetylene, ethylene, and methane feedstocks via direct experimentation were 550, 700, and 950°C, respectively, consistent with the trend in literature-extracted mean optima (642 ± 128, 739 ± 82, and 858 ± 125°C, respectively). These relative temperatures are consistent with a universal CNT growth mechanism, wherein all carbon feedstocks are converted to alkyne-containing species that serve as direct precursors for CNT growth. Mitigating this step with rational carbon precursor delivery, rather than relying on heat to generate the most reactive precursors in situ, could largely reduce the environmental burdens in CNT manufacturing. Indeed, manipulating the starting gas-phase composition and minimizing the thermal treatment through the use of CH increased carbon conversion yield by a factor of more than 10 compared to CH, and, consequently, should minimize hazardous volatile organic compound and polycyclic aromatic hydrocarbon emissions. The methodology utilized in this study is transferrable to guide the green synthesis of other materials and should be automated in the future for high-throughput screening of the vast process chemistry literature.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85027888759&origin=inward; http://dx.doi.org/10.1039/c7gc01421j; https://xlink.rsc.org/?DOI=C7GC01421J; http://xlink.rsc.org/?DOI=C7GC01421J; http://pubs.rsc.org/en/content/articlepdf/2017/GC/C7GC01421J; https://dx.doi.org/10.1039/c7gc01421j; https://pubs.rsc.org/en/content/articlelanding/2017/gc/c7gc01421j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know