A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies
New Journal of Chemistry, ISSN: 1369-9261, Vol: 41, Issue: 12, Page: 5125-5132
2017
- 34Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Herein, a fluorescent oxacalix[4]arene-based receptor, DAQTNOC(5,17-di(N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide) tetranitrooxacalix[4]arene), was described for the specific recognition of N-methyl-p-nitroaniline (MNA). Among the array of explosives, DAQTNOC shows selective behaviour for MNA in the absorption and as well as emission spectra. The binding constants, stoichiometry, quantum yields, and fluorescence quenching were determined to elucidate the inclusion behaviour. Furthermore, computational insights were rendered for studying the stability and spectroscopic analysis of the inclusion complex using docking, molecular dynamics simulations, and density functional theory (DFT) along with time-dependent density functional theory (TD-DFT). The calculations considerably complement the findings and elucidate the structural geometry and mode of interactions in supramolecular complexation. Herein, we observed that DAQTNOC was selectively stabilized by van der Waals forces and hydrophobic contacts with MNA to generate a low-energy complex. These findings are of wide interest, especially because MNA is a well-known insensitive munition and has been detected for the first time via an oxacalixarenes platform.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85021632126&origin=inward; http://dx.doi.org/10.1039/c7nj01111c; http://xlink.rsc.org/?DOI=C7NJ01111C; http://pubs.rsc.org/en/content/articlepdf/2017/NJ/C7NJ01111C; https://xlink.rsc.org/?DOI=C7NJ01111C; https://dx.doi.org/10.1039/c7nj01111c; https://pubs.rsc.org/en/content/articlelanding/2017/nj/c7nj01111c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know