The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine
New Journal of Chemistry, ISSN: 1369-9261, Vol: 41, Issue: 24, Page: 15439-15446
2017
- 19Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Herein, a novel dopamine (DA) electrochemical sensor was developed by combining carbon nanospheres (CNSs) and sulfonated polyaniline (SPANI) with their own excellent characteristics. The sensing materials SPANI/CNSs were prepared through a green and economical approach under hydrothermal treatment, in situ chemical oxidative polymerization, and sulfonation. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the morphology and composition of the nanocomposites. Moreover, electrochemical activities of the sensor were investigated by cyclic voltammetry, differential pulse voltammetry, and amperometry. Investigation of the sensor indicated that it had excellent properties towards DA oxidation, with a linear range from 0.50 μM to 1.78 mM, a detection limit of 0.0152 μM (S/N = 3), and a sensitivity of 113.9 μA mM cm. Moreover, the sensor exhibited intriguing anti-interference to co-existing substances such as ascorbic acid (AA), uric acid (UA), and glucose (Glu). These electrochemical results could be attributed to the enhanced electron transfer rates and abundant functional groups with negative charges possessed by the nanocomposites. Therefore, the SPANI/CNS nanocomposites showed great application potential for the construction of a DA sensor.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85037636812&origin=inward; http://dx.doi.org/10.1039/c7nj03086j; https://xlink.rsc.org/?DOI=C7NJ03086J; http://xlink.rsc.org/?DOI=C7NJ03086J; http://pubs.rsc.org/en/content/articlepdf/2017/NJ/C7NJ03086J; https://dx.doi.org/10.1039/c7nj03086j; https://pubs.rsc.org/en/content/articlelanding/2017/nj/c7nj03086j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know