Key factors in FTIR spectroscopic analysis of DNA: The sampling technique, pretreatment temperature and sample concentration
Analytical Methods, ISSN: 1759-9679, Vol: 10, Issue: 21, Page: 2436-2443
2018
- 65Citations
- 109Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Key factors in FTIR spectroscopic analysis of DNA: the sampling technique, pretreatment temperature and sample concentration
Anal. Methods, 2018, Accepted ManuscriptDOI: 10.1039/C8AY00386F, PaperYahong Han, Lujia Han, Yumei Yao, Yanfei Li, Xian Read More RegisterAnal. Methods, 2018, Accepted Manuscript DOI: 10.1039/C8AY00386F, PaperYahong
Article Description
Fourier transform infrared (FTIR) spectroscopy has been considered as a powerful tool for analysing the characteristics of deoxyribonucleic acid (DNA) regardless of physical states, sample amounts and the molecular weight of DNA. However, FTIR spectroscopic analysis of DNA might be influenced by the stability and conformational integrity of deoxyribonucleic acid. This work systematically investigated the key factors in FTIR spectroscopic analysis of DNA and explored the influence of FTIR acquisition parameters, including FTIR sampling techniques (traditional KBr-FTIR, high throughput (HT)-FTIR, Micro-FTIR-point, and Micro-FTIR-image), pretreatment temperature, and sample concentration, on calf thymus DNA (CT-DNA). The results showed that the FTIR sampling techniques had a significant influence on the spectral characteristics, spectral quality, and sampling efficiency. Furthermore, HT-FTIR technique enabled rapid automated collection of spectra and was selected for obtaining better spectral accuracy and repeatability. Additionally, a pretreatment temperature of 30 °C was selected to dry DNA, because the continuous increase of temperature had a great impact on the spectral analysis of DNA. The sample concentration was also proven to have a great effect on the spectral repeatability and SNR, especially for the initial sample amounts, where optimum sample amounts (100 μg) were selected. These fundamental studies provide proof of a spectral collection that further supports subtle DNA structural analysis by FTIR spectroscopy.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know