Formation of in situ HVPE a-plane GaN nanodots: effects on the structural properties of a-plane GaN templates
CrystEngComm, ISSN: 1466-8033, Vol: 20, Issue: 28, Page: 4036-4041
2018
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In situ a-plane GaN nanodots were formed on r-plane sapphire substrates to obtain a-plane GaN layers by using hydride vapor phase epitaxy (HVPE). The size and density of the GaN nanodots influence the juncture of the 2D growth of a-plane GaN, thus determining the density of threading dislocations and stacking faults as well as the surface morphology in growing a-plane GaN layers. Faster agglomeration in a-plane GaN layers via GaN nanodots with small size and high density leads to a decrease in the density of threading dislocations. A higher number of grain boundaries formed by nanodots with small size and high density are also responsible for a reduction in the number of stacking faults. Furthermore, we infer that the reduced atomic migration length difference of Ga and N along the c-axis and m-axis directions in GaN nanodots formed at low growth temperatures improved the surface morphology of a-plane GaN layers via the formation of a-plane GaN islands with an isotropic shape. We believe that this approach will provide a simple and efficient way to control the structural defects and surface undulations of a-plane GaN layers without any complex processes or additional expense.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know