Methanol as a hydrate inhibitor and hydrate activator
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 20, Issue: 34, Page: 21968-21987
2018
- 55Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations55
- Citation Indexes55
- 55
- CrossRef44
- Captures26
- Readers26
- 26
Article Description
During their transport to processing plants, produced hydrocarbon streams are always accompanied by water appearing as a separate phase in contact with the hydrocarbons. Dramatic temperature and pressure changes during processing can lead to condensation of water and possibly hazardous formation of ice and hydrates. Historically, methanol has been the dominating chemical agent added to prevent the formation of solid water phases. In this work, the technique of molecular dynamics simulation has been utilized to investigate and illustrate the impact of methanol as a surfactant in a water-methane system. We have found that adding 5% of methanol boosted the diffusion of methane through the interface by more than 40% compared to the reference system. The amount of methane accumulated in the aqueous phase was also significantly higher. This effect will likely also result in a significant increase in homogeneous and heterogeneous hydrate formation in these regions in the case of the methanol-stimulated system, and thus necessitate the application of classical nucleation theory. In particular, our analysis emphasised the fact that several different hydrates may form in this scenario. In case of the homogeneous hydrate formation, there will theoretically exist an infinite number of hydrate phases corresponding to concentrations spanning the range between methane's solubility and its hydrate stability limit.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85052815114&origin=inward; http://dx.doi.org/10.1039/c8cp02447b; http://www.ncbi.nlm.nih.gov/pubmed/30109312; https://xlink.rsc.org/?DOI=C8CP02447B; https://dx.doi.org/10.1039/c8cp02447b; https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp02447b
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know