Debye screening, overscreening and specific adsorption in solutions of organic ions
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 20, Issue: 43, Page: 27684-27693
2018
- 9Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef7
- Captures17
- Readers17
- 17
Article Description
Tetrabutylammonium (TBA) and tetraphenylborate (TPB) ions dissolved in dichloroethane (DCE) are widely used in electrochemistry of liquid-liquid interfaces. Unlike alkali halide solutions in water, TBA-TPB-DCE solutions feature large organic ions and a solvent with a dielectric constant almost one order of magnitude lower than that of water. This is expected to dramatically amplify the impact of ionic correlations in the properties of the solution. Here we report atomistic simulations of TBA-TPB-DCE solutions and analyze ion correlations, clustering, and charge screening effects. We target concentrations in the range of 0.01-0.25 molal (m), hence exploring concentration regimes typical for many experimental investigations. We show that the transition from monotonic to oscillatory decay of the charge density, which signals the onset of strong ion correlations, takes place in this concentration interval, leading to overscreening effects. Furthermore, we investigate the distribution and adsorption of ions at the DCE-air interface. Unlike what is observed for small inorganic ions in water at similar concentrations, we find that TPB and TBA ions accumulate near the DCE surface, resulting in significant interfacial clustering and adsorption at concentrations ∼0.25 m. TPB ions adsorb more strongly leading to free energy wells of ∼1-2 kT. The adsorption modifies significantly the electrostatic potential of the DCE-air interface, which undergoes a shift of 0.2 V in going from pure DCE to TBA-TPB-DCE solutions at 0.25 m.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85056263278&origin=inward; http://dx.doi.org/10.1039/c8cp04924f; http://www.ncbi.nlm.nih.gov/pubmed/30376022; https://xlink.rsc.org/?DOI=C8CP04924F; https://dx.doi.org/10.1039/c8cp04924f; https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp04924f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know